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Abstract

In the lecture we mainly focus on questions about binary classification or regres-
sion. However in many cases we may want the results to show preference in terms
of several discrete, but ordered, values, like ratings of a restaurant, disease condition
and students’ letter grades. Such problems are usually known as ordinal regression or
ordinal classification. Standard approaches to ordinal regression in statistics require a
assumption on the distribution of a latent variable while many other learning methods
treat this as a multiclass problem, which may lose the order information in the data.
In this paper I first present the probability model of ordinal regression in traditional
statistics, then briefly go through different types of loss function defined from two per-
spectives in order to reduce the problem to simple binary case. From the loss function
we can also get performance bounds similar to those we learnt in binary classification.

1 Introduction

Compared to the standard machine learning tasks of classification or regression, there exist
many other systems in which users specify preferences by giving each sample one of several
discrete values, e.g. one through five stars in movie or restaurant rating and A through
F in letter grades. Those problems are often considered as multiclass classification, which
treated the labels as a finite unordered nominal set. However in that case the natural order
structure of the data is ignored and may not be as accurate. Therefore one nature question
arises: can we make use of the lost ordinal information to potentially improve the predictive
performance of the classifier or simplify the learning algorithm?

Such question has been studied in statistics for decades. Notice that the ordinality
also bring us the capability of grouping the outcome into binary classification problem, i.e.
(Y ≤ j versus Y > j). Many approaches apply regression method in these questions, P.
McCullagh first proposed a ordered logistic regression model in 1980 [4], which is also known
as the proportional odds model or cumulative logit model. One interpretation of ordered
logistic regression is by using a latent variable Z . Let θj be K − 1 different threshold then
we have the relationship P{Y ≤ j} = P{Z ≤ θj}. A major drawback of this is that it relies
on probability model of a latent variable which means it is distribution dependent.

In order to use the analytic tools in learning theory, we need to carefully design the
loss function in ordinal regression. In Alexander’s work [5] their exploit the ordinal nature
by introducing a ‘preference’ function which compare true ranks of two example with their
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predicted ranks to act like a 0-1 loss function. They also provided a convergence bound on
expected loss and presented a large margin algorithm. But in their implement they expand
the size of example to O(N2) and their bound was restricted to hard-margin cases, i.e., for
all example(x, y) there exist a f such that yf(x) ≥ ∆ > 0. Another approach is provided
by Ling and Hsuan-Tien in [3], where they use a ‘cost matrix’ to define the expected loss.
Instead of directly comparing each pair of examples, they extended the origin example first
then reduced the problem back to a binary classification. By a pre-defined ranking rule
their framework combined results from the binary classifiers and predict a rank. It turns out
many existing ordinal regression algorithms can be unified in their framework [1]. Since the
reduced framework is just binary classification, we can apply the results in the course and I
derive a confidence bound for it, which is consistent with their result in [3].

The paper is organized as follows. I briefly go through the traditional statistics model of
ordinal regression first in section 2, which also includes some stochastic ordering assumption.
In section 3 I give a review on Alexander’s results based on his paper [5]. A confidence bound
based on the result of RKHS with hinge loss and the framework of [3] is provided in section
4, and section 5 is the conclusion.

2 Statistics Model for Ordinal Regression

Let X and Y be the feature space and label space. Assume the label Y = {y1, y2, . . . , yK}
with ordered ranks yk � yq−1 � · · · � y1 where � stands for the users’ preference. Since Y
is a finite set, P{Y = yi|x} = πi(x) is a multinomial distribution. In statistics we made the
assumption that the cumulative probability P{Y ≤ yi|x} =

∑i
j=1 πj(x) is a logistic function

with a linear model.

P{Y ≤ yi|x} = φ(θi −wTx) =
1

1 + exp(wTx− θi)
(1)

where w, θi are unknown parameters to be estimated (with θ0 = −∞, θk =∞ by definition)
and φ is the logistic function φ(z) = 1

1+e−z . Unlike the general polytomous regression, where
each category yi has different wi and θi, in ordinal regression there is only one weight vector
w for every category the only difference is the threshold θi as shown in figure 1. Which
means, the hyperplanes that separate different labels are parallel for all classifiers. That
gives us one effective way to construct the ordinal regression model with a latent variable
Z = wTx + ε where ε is a mean zero random variable. So we have the following monotone
relationship:

Y = yj ⇐⇒ Z ∈ [θj−1, θj] (2)

It follows from (2):

P{Y ≤ yi|x} =
i∑

j=1

πj(x) = P{Z ≤ θi}

= P{wTx + ε ≤ θi} = P{ε ≤ θi −wTx}
= Pε{θi −wTx}
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Figure 1: logit function with 2 different thresholds.

When Pε is a logistics distribution, we get model in equation (1). Other distributional
assumptions like normal distribution, yield different generalized linear model with the cor-
responding link function. After choosing the distribution, we can use maximum likelihood
estimation to get ŵ and θ̂i.

So far we have made two major assumptions in the traditional model: (i) all the weight
vectors w for every category are the same and (ii) the distribution of a latent variable Z. In
Eibe Frank and Mark Hall’s work [2] they used the cumulative property of this model that
πi(x) = P{Y ≤ yi|x} − P{Y ≤ yi−1|x} and trained K − 1 classifiers each handle the binary
task: is the predicted value of example x larger than yi or not? Then combined the results
from k − 1 classifiers and gave a final decision. It’s a easy approach for the problem but
each classifier is independent of the others hence it’s difficult to analyze the performance.
In the next section, I will show the work from [5] where they provided a distribution-free
confidence bound by using the ‘preference’ function.

3 Confidence Bound with Preference Function

This section in a summary of results in [5]. One major issue we need to overcome with ordinal
regression is the definition of loss function and the corresponding empirical loss. Unlike the
binary case, where we can use 0-1 loss to determine whether the result is good or bad, in
ordinal regression the simple indicator function 1{f(x)6=y} does not show the difference of
closeness, e.g. for a test example (x, 4), we may consider the prediction (x, 3) is closer than
(x, 1). Let G be all the mappings from X to Y . From the ordinality of outcome(yi � yj)
they induced a ordering �X on the feature space:

xi �X xj ⇐⇒ g(xi) � g(xj) (3)

Consider a mapping g ∈ G and two examples (x1, y1) and (x2, y2). They first defined the
rank difference 	 : Y ×Y 7→ Z by: yi 	 yj , i− j. Then from (3) we can compare the rank
difference y1 	 y2 and g(x1)	 g(x2) and determine whether the mapping is consistent with
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the ordering or not. We said that g violates the ordering if {y1	 y2}× {g(x1)	 g(x2)} ≤ 0.
Thus we have a preference function as below:

cpref (x1,x2, y1, y2, g(x1), g(x2)) =

{
1 if {y1 	 y2} × {g(x1)	 g(x2)} ≤ 0;
0 else.

(4)

Notice that by this definition they expanded the sample space to O(N2), and those examples
are not iid samples. Furthermore they introduced the ‘loss function’ cg by:

cg(x, y, g(x)) = EX1,Y1 [cpref (x, X1, y, Y1, g(x), g(X1))] (5)

Recall that in the binary case, our goal is to minimize the expected loss of a given function:

LP (f) = P{f(X) 6= Y } = EX,Y [1{f(X) 6=Y }] ≤ EX,Y [l(X, Y, f(X))] (6)

where l is 0-1 loss or some surrogate loss function. Similarly, they defined the risk function
to be minimized as:

Rpref = EX1,Y1,X,Y [cpref (X1, X, Y1, Y, g(X1), g(X))] = EX1,Y1 [cg(X1, Y1, g(X1))] (7)

Although equation (7) looks very like the right hand side of expected loss we use in (6)
and each cg function has already included the ordering information in it, the fact that it is
actually a expectation over X × Y × X × Y and those examples violate the iid assumption
in learning theory, makes it more complicate to analyze and minimize than the standard 0-1
loss. Hence they also provided a slightly redefined empirical loss in order to relate the Rpref

to the standard classification task. For simplicity, define the new training set derived from
pairs of x and y with different ranks by:

(X ′, Y ′) = {((x(1)
i ,x

(2)
i ),Ω(y

(1)
i , y

(2)
i ))}m′i=1, for ∀|y(1)i − y

(2)
i | > 0 (8)

where Ω(yi, yj) = sgn(yi	 yj) and x(1),x(2) denoted the first and second object of a pair, m′

is the cardinality of new set (X ′, Y ′). Let z = (x(1),x(2)) and t = Ω(y(1), y(2)), then the risk
function (7) can be written as:

Rpref (g) = EY1,Y2 [|Ω(Y1, Y2)|]EZ,t[cg(Z, t,Ω(g(X(1)), g(X(1)))] (9)

with sample size N = m the empirical loss can be defined as:

Remp(g) =
m′

m2

m′∑
i=1

cg((x
(1)
i ,x

(2)
i ),Ω(y

(1)
i , y

(2)
i ),Ω(g(x

(1)
i ), g(x

(2)
i ))) (10)

The rest of their paper they provided a performance bound based on the zero training error
case. i.e there exists a g ∈ G such that the Remp can be 0. Then with probability 1− δ:

Rpref (g) ≤ 2

m− 1
(k log2(

8e(m− 1)

k
) log2(32(m− 1)) + log2(

8(m− 1)

δ
)) (11)

where k ≤ e(m − 1). The major drawback of this bound is that it was restricted to the
separable case, which means minimal empirical error must be zero. When there doesn’t
exists such g ∈ G, we cannot guarantee the performance of the classifier even if it minimized
the empirical loss. Not to mention that it exploded the feature space so was not very efficient
when size N is very large. In the next session I will talk about another approach to solve
the problem which turns out to be quite universal.
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4 Analysis with Cost Martix

Let P be the hidden distribution under X ×Y . Recall the expected loss in binary classifica-
tion, LP (f) = EP [1{f(X)6=Y }]. One can think of the this as the expectation of elements in a
2×2 matrix where the rows and columns represent the possible output and label respectively.
Similarly we can introduce the K ×K cost matrix C with Cy,k being the cost of predicting
an example (x, y) as rank k. Then we can define the generalization error of a ranking rule
r : X 7→ Y as:

C(r, P ) = EP [CY,r(X)] (12)

where we assume Cy,y = 0 and Cy,k > 0 for k 6= y. Usually a cost matrix with V-shaped
rows are preferred in order to interpret the ordinal information. That means Cy,k−1 > Cy,k
for k ≤ y and Cy,k < Cy,k+1 for k ≥ y. The absolute cost matrix Cy,k = |y − k| is a popular
choice. Given a data set S = {(xn, yn)}Nn=1 the goal is to find a ranking rule r that has a
small generalization error Cr,P . According to the ordinal property of the data, one way to
construct a ranking rule is by adding the result from K−1 binary classifiers 1{f(x,k)>0}, each
of them determines whether the rank of x is greater than k or not, i.e.

r(x) = 1 +
K∑
k=1

1{f(x,k)>0} (13)

we also want f to be rank-monotonic, i.e. f(x, 1) ≥ f(x, 2) ≥ . . . ≥ f(x, K − 1) for every
example. Then we can rewrite the cost Cy,r(x) as:

Cy,r(x) =
K−1∑
k=r(x)

(Cy,k − Cy,k+1) + Cy,K =
K−1∑
k=1

(Cy,k − Cy,k+1)1{f(x,k)≤0} + Cy,K (14)

For notational simplicity, let x(k) = (x, k) and y(k) = 2 ∗ 1{k<y} − 1 so we can define the
extended example (x(k), y(k)) with a weights wy,k = |Cy,k−Cy,k+1|. And (14) can be bounded
by:

Cy,r(x) =

y−1∑
k=1

wy,ky
(k)
1{f(x(k))≤0} +

K−1∑
k=y

wy,ky
(k)(1− 1{f(x(k))>0}) + Cy,K (15)

≤
K−1∑
k=1

wy,k1{y(k)f(x(k))≤0}. (16)

Equation (15) shows that the cost of r(x) is bounded by the weighted sum of 0-1 loss of
the binary classifier f(x, k) = f(x(k))! That gives us the ability to bound the expected loss.
One choice of the function f is to use a threshold model: f(x, k) = g(x)− θk and in [3] they
shows that when minimizing the surrogate loss of such f with regularization, there exists a
optimal solution (g∗,θ∗) such that θ∗ is ordered.
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4.1 Generalization Bound

From the definition of wy,k and V-shaped property, we know that
∑

k wy,k = Cy,1 +Cy,K = cy.
Then Pk|y{k|y} =

wy,k

cy
is a probability mass function. From (16) we have:

Cy,r(x) ≤ cy

K−1∑
k=1

wy,k
cy

1{y(k)f(x(k))≤0} = cy EPk
[y(k)f(x(k)) ≤ 0] (17)

Therefore we can construct a probability distribution P̂ on {(x(k), y(k))} that generate a new
example (x(k), y(k)) by choosing the example (x, y) first from P and then choosing k from
Pk|y. By which we have the following theorem:

Theorem 1. if f is rank monotonic, let c = maxy cy. Then there exists a distribution P̂ on
(X(k), Y (k)) such that

EP [Cy,r(x)] ≤ cEP̂ [Y (k)f(X(k)) ≤ 0]

Proof. with the P̂ constructed as above, taking expectation on both side of (17) leads to:

EP [Cy,r(x)] ≤ EP cy · EPk
[y(k)f(x(k)) ≤ 0] ≤ cEP̂ [Y (k)f(X(k)) ≤ 0]

And {(x(k), y(k))} from P̂ are iid. Notice that the RHS of the inequality is just the
expected 0-1 loss of a binary classifier f times a constant c. Hence we can use the bound in
learning theory to guarantee the performance of the extended binary classifier.

Theorem 2. (Bounds for extended binary classification with surrogate loss) Suppose F and
the penalty function ϕ are chosen so that the following conditions are satisfied:

• ϕ(−yf(x)) ≤ B for some constant B fo all (x, y) ∈ (X(k), Y (k)) and f ∈ F

• ϕ is Mϕ Lipschitz continuous.

then for any n and δ ∈ (0, 1), and any learning algorithm, the following bounds holds with
probability 1− δ

EP [Cy,r̂n(x)] ≤ c

{
Aϕ,n(f̂n) + 4Mϕ E[Rn(F(Xn))] +B

√
log(1/δ)

2n

}
(18)

4.2 Application of Theorem 2 in RKHS by using Support Vector
Machine

Consider the kernel K(x, x) = 〈x, x〉 + 1 and the RKHS associated with K is HK . If we
constrained the function f to a closed ball of radius 1 and a closed

√
K(x, x) ≤ CK , i.e. :

f(x, k) ∈ {f : (x, k) 7→ 〈u,x〉 − θk, ‖f‖2 = ‖u‖2 + ‖θ‖2 ≤ 1, ‖x‖2 + 1 ≤ C2
k}
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with the ramp loss ϕ(x) = min{1, (1 + x)+}So the expected loss of ranking rule r̂n(x)
generating by f̂n from (13) is bounded by:

EP [Cy,r̂n(x)] ≤ c

{
1

N

N∑
n=1

1{y(kn)
n f̂(x

(kn)
n )≤1} + 4

CK√
N

+

√
log(1/δ)

2N

}
(19)

where 1{y(kn)
n f(x

(kn)
n )≤1} is a random variable introduced by Pk|y. Its mean 1

cyn

∑K−1
k=1 w

(k)
n 1{y(k)n f(x

(k)
n )≤1}

By Huffding’s inequality, we have:

1

N

N∑
n=1

1{y(kn)
n f̂(x

(kn)
n )≤1} ≤

1

N

N∑
n=1

1

cyn

K−1∑
k=1

w(k)
n 1{y(k)n f̂(x

(k)
n )≤1} +

√
log 1/δ

N
, w.p. at least 1 - δ

(20)
Combine (19) and (20), we have the same bound w.p. at least 1− δ in the form:

EP [Cy,r̂n(x)] ≤
β

N

N∑
n=1

K−1∑
k=1

w(k)
yn 1{y(k)n f̂(x

(k)
n )≤1} +O(

Ck√
N
,

√
log 1

δ

N
) ,where β =

maxy cy
miny cy

5 Conclusion

In the paper, I first go through the traditional statistics setup of ordinal regression problem
which makes several distribution assumptions. Although the model is fairly simple, it does
not always make sense to have those assumptions. Then I review two major distribution
independent methods towards the problem. In section 3 where they tried to interpret the
ordering information by a preference loss function. The idea behind this is straightforward
but it’s too complicate to analyze the performance and even their results are restricted to the
hard margin case only. In last section I summarize some key definitions and results from [3],
then verify the result using a SVM example.
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